Warning (2): file_get_contents(): https:// wrapper is disabled in the server configuration by allow_url_fopen=0 [ROOT/vendors/mathml_to_image.php, line 6]
Warning (2): file_get_contents(https://www.wiris.net/demo/editor/render.png?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfenced+separators%3D%22%7C%22%3E%3Cmi+mathvariant%3D%22bold%22%3Eiii%3C%2Fmi%3E%3C%2Fmfenced%3E%3Cmsup%3E%3Cmi%3Etan%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmfenced+separators%3D%22%7C%22%3E%3Cmfrac%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmi+mathvariant%3D%22normal%22%3Ex%3C%2Fmi%3E%3C%2Fmfrac%3E%3C%2Fmfenced%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3E%3C%2Fmi%3E%3Cmfenced+open%3D%22%7B%22+close%3D%22%22+separators%3D%22%7C%22%3E%3Cmtable+rowlines%3D%22none%22+columnlines%3D%22none%22+frame%3D%22none%22%3E%3Cmtr%3E%3Cmtd%3E%3Cmsup%3E%3Cmi%3Ecot%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmi+mathvariant%3D%22normal%22%3Ex%3C%2Fmi%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmi%3Efor+x%3C%2Fmi%3E%3Cmo%3E%26gt%3B%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmtd%3E%3C%2Fmtr%3E%3Cmtr%3E%3Cmtd%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3E%26pi%3B%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmsup%3E%3Cmi%3Ecot%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmi+mathvariant%3D%22normal%22%3Ex%3C%2Fmi%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmi%3Efor+x%3C%2Fmi%3E%3Cmo%3E%26lt%3B%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmtd%3E%3C%2Fmtr%3E%3C%2Fmtable%3E%3C%2Fmfenced%3E%3C%2Fmath%3E) [function.file-get-contents]: failed to open stream: no suitable wrapper could be found [ROOT/vendors/mathml_to_image.php, line 6]
Warning (2): file_get_contents() [function.file-get-contents]: https:// wrapper is disabled in the server configuration by allow_url_fopen=0 [ROOT/vendors/mathml_to_image.php, line 6]
Warning (2): file_get_contents(https://www.wiris.net/demo/editor/render.png?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmfenced+open%3D%22%7C%22+close%3D%22%7C%22+separators%3D%22%7C%22%3E%3Cmi+mathvariant%3D%22normal%22%3Ex%3C%2Fmi%3E%3C%2Fmfenced%3E%3Cmsqrt%3E%3Cmsup%3E%3Cmi+mathvariant%3D%22normal%22%3Ex%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsqrt%3E%3C%2Fmfrac%3E%3C%2Fmath%3E) [function.file-get-contents]: failed to open stream: no suitable wrapper could be found [ROOT/vendors/mathml_to_image.php, line 6]
Theory Part 2|Sureden:Your Education Partner

Theory Part 2

Property II:

(i) sin (sin-1 x) = x= cos (cos-1 x),                for all x ∈ [-1, 1]

Property III:

(i) sin-1 (-x) = -sin-1 (x),                  for all x ∈ [-1, 1]

(ii) cos-1 (-x) = π - cos-1 (x),           for all x ∈ [-1, 1]

(iii) tan-1 (-x) = -tan-1 x                   for all x ∈ R

(iv) cosec-1 (-x) = -cosec-1 x,         for all x ∈ [-∞, -1] υ [1, ∞)

(v) sec-1 (-x) = π - sec-1 x,              for all x ∈ [-∞, -1] υ [1, ∞)

(vi) cot-1 (-x) = π - cot-1 x,              for all x ∈ R

Property IV:

(i) sin-1 x + cos-1 x = (π/2),            for all x ∈ [-1, 1]

(ii) tan-1 x + cot-1 x = (π/2),           for all x ∈ R

(iii) sec-1 x + cosec-1 x = (π/2),      for all x ∈ (-∞, -1] υ [1, ∞)

Property V:                     

(i) sin-1 (1/x) = cosec-1 x,               for all x ∈ (-∞, -1] υ [1, ∞)

(ii) cos-1 (1/x) = sec-1 x,                 for all x ∈ (-∞, -1] υ [1, ∞)

Property VI:

(i) sin-1 x = cos-1 (1 – x2)1/2 = tan-1 [x/(1 – x2)1/2]

= cot-1 [((1 – x2)1/2)/x] = sec-1 [1/(1 – x2)1/2] = cosec-1 (1/x), x ∈ (0, 1)

(ii) cos-1 x = sin-1 (1 – x2)1/2 = tan-1 [((1 – x2)1/2)/x]

= cot-1 [x/(1 – x2)1/2] = sec-1 (1/x) = cosec-1 [1/(1 – x2)1/2], x ∈ (0, 1)

(iii) tan-1 x = sin-1 [x/(1 + x2)1/2] = cos-1 [1/(1 + x2)1/2]

= cot-1 (1/x) = sec-1 [(1 + x2)1/2] = cosec-1 [((1 + x2)1/2)/x], x > 0

Property VII:

(i) sin (cos-1 x) = cos (sin-1 x) = (1 – x2)1/2, -1 ≤ x ≤ 1.

(ii) tan (cot-1 x) = cot (tan-1 x) = (1/x), x ∈ R, x ≠ 0.

(iii) cosec (sec-1 x) = sec (cosec-1 x) =. |x| > 1.

Related Keywords
12    IIT    Math    Inverse Trigonometric Functions    Theory Part 2